Abstract

3. Causer Approach

Untitled

3.1 Training Procedure

$$ \begin{aligned} P(Y|do(S), I) &=\Sigma_mP(Y|s, i_j, D(m, s))P(M=m)\\ &=\frac{1}{K}\Sigma_k^KP(Y|s^{(k)}, i_j^{(k)}, d^{(k)})\\ &=\frac{\tau}{K}\Sigma^{K}_{k=1}\frac{(i_j^{(k)})^T s^{(k)}}{||i_j^{(k)}||_2 ~||s^{(k)}||_2} \end{aligned} $$

$$ ⁍ $$

$$ \begin{aligned} L&=L_R+\beta L_I\\ L_R&=-\Sigma_{j=1}^ny_jlog(\hat{y}{s, j})\\ L_I&=-\Sigma{j=1}^ny_jlog(\hat{y}{ j})\\ \hat{y}{s,j}&=softmax([Y|do(S=s), I=i_j])\\ \hat{y}_{j}&=softmax([Y|I=i_j])\\

\end{aligned} $$

3.2 Inference

$$ \frac{\tau}{K}\Sigma^{K}_{k=1}(\frac{(i_j^{(k)})^T s^{(k)}}{||i_j^{(k)}||_2 ~||s^{(k)}||_2} -\alpha\frac{cos(s^{(k)}, \hat{d}^{(k)})\cdot (i_j^{(k)})^T\hat{d}^{(k)}}{||i_j^{(k)}||_2} ) $$

4. Experimental Evaluation

Untitled